
GENERAL CRITERIA FOR CURVES TO BE SIMPLE

MARTIN CHUAQUI

Abstract. We extend previous results for parametrized curves in euclidean
space to be simple. The new condition depends as before on Ahlfors’ Schwarzian
and considers a conformal metric on a given interval and the new diameter.
We derive some applications, among which we find Becker type conditions that
depend on a pre-Schwarzian.

1. Introduction

The purpose of this paper is to extend results in [5], where the use of Sturm
comparison and Ahlfors’ Schwarzian for curves led to sufficient conditions for
parametrized curves in euclidean space to be simple. In many cases, the con-
dition was sharp. By considering a “conformal metric” on an interval, we derive
here a more general condition of the same type that takes into account the modified
diameter of the interval. The theorem fills in the gaps when the former condition
was not optimal. In addition, suitable choices of the conformal factor give rise to
criteria that depend on a pre-Schwarzian derivative, and analogues of criteria for
holomorphic mappings in the disk due to Ahlfors, Becker, and Epstein [2], [3], [9].

We begin with a brief account on Ahlfors’ Schwarzian for curves. In [1] the
author generalizes the Schwarzian to cover f : (a, b) → Rn by separately defining
analogues of the real and imaginary parts Re{Sf}, Im{Sf} of the Schwarzian of a
locally injective mapping f . For parametrized curves with f ′ 6= 0 he defined

(1.1) S1f =
〈f ′, f ′′′〉
|f ′|2

− 3
〈f ′, f ′′〉2

|f ′|4
+

3

2

|f ′′|2

|f ′|2
,

and

(1.2) S2f =
f ′ ∧ f ′′′

|f ′|2
− 3
〈f ′, f ′′〉
|f ′|4

f ′ ∧ f ′′ ,

respectively. Here,〈 , 〉 denotes the standard inner product, and for ~a,~b ∈ Rn, ~a∧~b
is the antisymmetric bivector with components (~a ∧ ~b)ij = aibj − ajbi and norm

[
∑

(aibj − ajbi)2]1/2. Ahlfors indicated that he was led to these seemingly esoteric
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definitions by a direct identification of Re{zζ̄} with the inner product 〈z, ζ〉 of the
2-dimensional vectors z, ζ and the far from obvious identification of Im{zζ̄} with
the corresponding z ∧ ζ. For the purpose of injectivity, only S1f has played a role
so far. In [5] a simpler form was obtained for S1f in the form

S1f =

(
v′

v

)′
− 1

2

(
v′

v

)2

+
1

2
v2k2 ,

where v = |f ′| and k is the curvature. Thus, if s = s(x), x ∈ (a, b), stands for the
arclength parameter, then

(1.3) S1f = Ss(x) +
1

2
v2k2 ,

where Sh = (h′′/h′)′ − (1/2)(h′′/h′)2 is the usual Schwarzian.
Since the operators introduced by Ahlfors are Möbius invariant (see [1], [5]), one

can include curves into Rn ∪ {∞}. Another important property that will be used
is that of a chain rule, which states that under a change of parameter x = h(t),

S1(f ◦ h) = [(S1f) ◦ h] (h′)2 + Sh .

The combination of these properties together with comparison techniques from
the Sturm theory has resulted in important applications of the S1 operator in
questions regarding the injectivity of the conformal immersion of planar domains
into higher dimensional euclidean space [6], [7], [4], [12].

The following results were established in [5]:

Theorem A. Let p = p(x) be a continuous function defined on an interval I ⊂ R
with the property that no non-trivial solution of

(1.4) u′′ + pu = 0

has more than one zero. Let f : I → Rn ∪ {∞} be a C3 curve with f ′ 6= 0 on I. If
S1f ≤ 2p then f is injective on I.

Suitable choices of functions p on the interval I = (−1, 1) were shown to render
analogues of the classical injectivity criteria due to Nehari [11]. For a coefficient
function p such as in the theorem, the differential equation (1.4) is called discon-
jugate. By considering p = π2/δ2 on an interval I of length δ we obtain from
Theorem A the important corollary that if

(1.5) S1f ≤
2π2

δ2

then f is injective. This choice of function p satisfies the hypothesis of the theorem
since one can arrange for a suitable trigonometric function to be a non-vanishing
solution of u′′ + (π2/δ2)u = 0 on I.

In theorem B below, the interval was normalized to be (−1, 1). The analysis
was simplified with the additional assumption of symmetry of the function p. The
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function F : (−1, 1) → R was defined by the conditions SF = 2p and F (0) =
0, F ′(0) = 1, F ′′(0) = 0.

Theorem B. Let f : (−1, 1) → Rn ∪ {∞}, f ′ 6= 0, satisfy f(0) = 0, |f ′(0)| =
1, f ′′(0) = 0 and suppose that S1f ≤ 2p for some even function p for which (1.4)
is disconjugate in (−1, 1). Then

(a) |f ′(x)| ≤ F ′(|x|) on (−1, 1) and f admits a (spherically) continuous extension
to [−1, 1].

(b) If F (1) <∞ then f is one-to-one on [−1, 1] and f([−1, 1]) has finite length.

(c) If F (1) =∞ then either f is one-to-one on [−1, 1] or, up to a rotation, f = F .

2. Main Result

We first establish an injectivity condition for parametrized curves that parallels
Theorem A.

Theorem 2.1. Let ψ = ψ(x) be a C2 function on an interval I ⊂ R, and let

δ =

∫
I

eψdx .

Let f : I → Rn ∪ {∞} be C3 with non-vanishing f ′. If

(2.1) S1f ≤ ψ′′ − 1

2
(ψ′)2 + e2ψ

2π2

δ2
,

then f is injective on I.

Proof. Fix x0 ∈ I and let

(2.2) F (x) =

∫ x

x0

eψ(t)dt .

The function F maps I = (a, b) in a one-to-one manner onto an interval J of total
length δ. It will be shown that (2.1) implies (1.5) for the curve g = f ◦ h, where
h = F−1.

From the chain rule we see that

Sh = −(SF )(h′)2 = −[ψ′′ − 1

2
(ψ′)2](h′)2 ,

and therefore

S1g = (S1f ◦ h)(h′)2 + Sh ≤ 2π2

δ2
.

This proves that g is injective on J , hence f is injective on I. �

We claim that Theorem A follows from Theorem 2.1 by choosing ψ adequately.
It is well known that a locally injective function G : I → R ∪ {∞} has SG = 2p if
and only if

G =
u1
u2
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for a pair u1, u2 of linearly independent solutions of (1.4) [8]. On the other hand,
given a solution u, variation of parameters gives a second, linearly independent
solution of the form u(x)

∫ x
u−2(t)dt. Consequently,

G(x) =

∫ x

u−2(t)dt

is always a function with SG = 2p, with the zeros of u mapped to the point at
infinity. The action of the Möbius transformations T (x) = (Ax + B)/(Cx + D),
AD − BC 6= 0, gives rise to all other functions H = T (G) with SH = 2p and all
other solutions of (1.4), v = (H ′)−1/2.

Suppose now that p satisfies the hypothesis of Theorem A. Any function with
SG = 2p will be injective on I (see, e.g., [8]), and thus J = G(I) is a non-
overlapping interval on R ∪ {∞}. Therefore, the set R ∪ {∞}\J contains at least
one point, and by choosing a suitable Möbius shift H = T (G), we may assume
that ∞ /∈ J . Hence u = (H ′)−1/2 is a solution of (1.4) that is non-vanishing on I.
We now let

eψ = u−2 ,

which gives that

SH = 2p = ψ′′ − 1

2
(ψ′)2 .

This shows that Theorem A can always be obtained from Theorem 2.1.

We now analyze under what circumstances Theorem 2.1 improves Theorem A,
that is, when is it possible to choose ψ = −2 log u for a non-vanishing solution of
(1.4) so that δ < ∞. We distinguish two cases. Suppose first that the interval J ,
as chosen above, is the entire real line R. This means that∫

a

u−2(t)dt =

∫ b

u−2(t)dt =∞ ,

which is equivalent to saying that u is principal at both endpoints of I. Any other
solution of (1.4) that does not vanish will be a constant multiple of u [10]. In this
case, Theorem 2.1 will not improve Theorem A (and corresponds to part (c) in
Theorem B).

Suppose now that J is a proper subinterval of R. This allows for a second Möbius
shift so that J is a bounded interval. Hence, there exists a nowhere vanishing
solution u of (1.4) that is not principal at either endpoint a, b. The choice ψ =
−2 log u produces a finite diameter, and Theorem 2.1 improves Theorem A exactly
by the last term in (2.1).

An interesting point is whether, in this last case, there exists an “optimal” choice
of function ψ, meaning a choice of a bounded interval J so that the term

Λ = ΛF = e2ψ
2π2

δ2
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is maximal for all x ∈ I. We analyze the effect on Λ of Möbius shifts G = T (F )
that map J = F (I) = (α, β) to another bounded interval. It is readily seen that
ΛF = λG when T is affine. If T is not affine, then up to an affine change, T is an
inversion of the form

T (y) =
1

y − y0
,

for some y0 /∈ J . A direct calculation shows that

ΛG = µ2ΛF ,

where

µ =
(y0 − α)(y0 − β)

(y0 − F (x))2
.

The extreme values of µ are the reciprocal quantities∣∣∣∣y0 − αy0 − β

∣∣∣∣ ,

∣∣∣∣y0 − βy0 − α

∣∣∣∣ ,
and are attained when F (x) is an endpoint of J . The values of µ stay close to 1
for relatively large y0, but can vary significantly when y0 is close to an endpoint of
J . In summary, among all functions ψ for which ψ′′ − (1/2)(ψ′)2 = 2p there is no
choice that maximizes the term Λ for all x ∈ I.

We finally analyze the sharpness of Theorem 2.1. For given ψ we let 2p =
ψ′′− (1/2)(ψ′)2. Since u = e−ψ/2 is a non-vanishing solution of u′′+ pu = 0, we see
that any solution of this equation can vanish at most once on I. We will say that
Theorem 2.1 is of infinite type if

(2.3)

∫
a

eψdx =

∫ b

eψdx =∞ .

Hence δ =∞ and the equation u′′ + pu = 0 admits a non-vanishing solution that
is principal at both endpoints of I.

We will say that Theorem 2.1 if of finite type if at least one of the integrals in
(2.3) is finite. As we have seen, in this case it is possible to modify ψ without
changing 2p = ψ′′ − (1/2)(ψ′)2 in a way that both integral in (2.3) are finite.

We claim that Theorem 2.1 is always sharp, in the following senses. First, there
exists a curve satisfying the hypothesis which fails to be injective in the closed
interval I. It is also sharp in the sense that given any ε = ε(x) ≥ 0 defined on I
which is not identically zero, there exists a non-injective f : I → Rn ∪ {∞} with

S1f ≤ ψ′′ − (1/2)(ψ′)2 + e2ψ
2π2

δ2
+ ε .

To establish these claims we consider the function F defined by (2.2). If we are
in the case of infinite type then F (a) = F (b) is the point at infinity, hence F fails
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to be injective on I. In the case of finite type, we can assume that ψ is chosen to
produce δ <∞. Choose x0 ∈ I so that F (b) = −F (a) = δ/2, and let

φ(x) = tan
(π
δ
F (x)

)
.

Then φ is an increasing function mapping I onto R, with φ(a) = φ(b) equal to the
point at infinity. Thus φ is not injective on I. Furthermore,

Sφ = ψ′′ − (1/2)(ψ′)2 + e2ψ
2π2

δ2
.

We call the functions F, φ extremals for Theorem 2.1 depending on the type. In
the last section, we will show them to be unique up to Möbius transformations.

The second claim follows in both cases from the following theorem.

Theorem 2.2. Let H : I → R be a C3 function with H ′ > 0 and SH = 2q, and
suppose that H(I) = R. If ε = ε(x) ≥ 0 is not identically zero then the differential
equation

(2.4) v′′ + (q + ε)v = 0

admits a non-trivial solution with at least two zeros.

Proof. Fix x0 ∈ I and consider the solution of (2.4) with

v(x0) = u(x0) , v′(x0) = u′(x0) ,

where u = (H ′)−1/2. For y ∈ R let

w(y) =
v

u

(
H−1(y)

)
.

Then

w′′(y) = −(εu4)w(y) ,

with εu4 evaluated at H−1(y). Furthermore, w(y0) = 1, w′(y0) = 0, x0 = H−1(y0).
This w is a non-constant concave function with a maximum at y0. If w is non-
constant to the right and to the left of y0, then by concavity it will vanish at y1, y2
with y1 < y0 < y2. The function v will then vanish at x1 = H−1(y1), x2 = H−1(y2).

Suppose now that w were to remain constant, say, to the right of y0 (but then
non-constant to the left). Then v will reach a zero x1 < x0 and, at the same time,∫ b

v−2dx =

∫ b

u−2dx =∞ .

Thus

G(x) =

∫ x

x0

v−2(t)dt
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is a function with SG = 2(q + ε) and G(x1) = G(b) equal to the point at infinity.
Because G : I → R∪ {∞} is locally injective, it follows that G(x2) = G(x3) = c <
∞ for some x2 > x1 and x3 < b. The function

G̃ =
1

G− c
has SG̃ = SG and ṽ = (G̃′)−1/2 will be the desired solution with two zeros.

�

We apply Theorem 2.2 with 2q = ψ′′ − (1/2)(ψ′)2 + e2ψ 2π2

δ2
and H equal to the

corresponding extremal. The fact that the modified differential equation admits a
non-trivial solution implies the existence of a function G : I → R∪{∞} with SG =
2q + ε which is not injective. This proves the second assertion about sharpness.

3. Other Corollaries

In this section we derive a few other corollaries that we find of particular interest.
In all cases, the proof relies on choosing a particular function ψ in Theorem 2.1.

Corollary 3.1. Let f : I → Rn ∪ {∞} be a C3 curve with nowhere vanishing f ′

and finite length L. If the curvature k satisfies

k ≤ 2π

L
then f is injective.

Proof. We choose ψ = log |f ′|, so that Ss = ψ′′− (1/2)(ψ′)2. The corollary follows
at once.

�

Corollary 3.2. Let f : I → Rn ∪ {∞} be a C3 curve with nowhere vanishing f ′.
If

(3.1) S1f ≤ 2t
1 + (1− t)x2

(1− x2)2
, t ≥ 1

or

(3.2) S1f ≤ 2t
1 + (1− t)x2

(1− x2)2
+

2π

(1− x2)2t

(
Γ(3

2
− t)

Γ(1− t)

)2

, 0 ≤ t < 1

then f is injective.

Proof. We choose ψ = −y log(1 − x2). For t ≥ 1, then δ = ∞, while for t ∈ [0, 1)
the diameter is finite and given by

√
π

Γ(1− t)
Γ(3

2
− t)

.

�
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Inequalities (3.1) and (3.2) represent analogues of criteria for holomorphic map-
pings derived by Ahlfors [2].

Corollary 3.3. Let f : I → Rn ∪ {∞} be a C3 curve with nowhere vanishing f ′.
If σ is a C2 function on I with

S1f +
2x

1− x2
≤ σ′′ − 1

2
(σ′)2 +

2

(1− x2)2

then f is injective.

Corollary 3.3 can be considered an analogue of the Epstein criterion [9].

Proof. We let ψ = σ − log(1− x2) in Theorem 2.1. �

Corollary 3.4. Let f : I → Rn ∪ {∞} be a C3 curve with nowhere vanishing f ′.
If σ is a C2 function with

v′

v
σ′ +

1

2
v2k2 ≤ σ′′ − 1

2
(σ′)2

then f is injective.

Proof. We let ψ = log |f ′|+ σ in Theorem 2.1. �

Corollary 3.5. Let f : I → Rn ∪ {∞} be a C3 curve with nowhere vanishing f ′.
If

2x

1− x2
v′

v
+

1

2
v2k2 ≤ 2

(1− x2)2
then f is injective.

This final corollary represents an analogue of the condition by Becker [3].

Proof. We let ψ = log |f ′| − log(1− x2) in Theorem 2.1. �

4. Distortion and Extensions

The purpose of this final section is to derive the corresponding version of Theo-
rem B for the main result here.

Theorem 4.1. Let f : I → Rn ∪ {∞} be a C3 curve with nowhere vanishing f ′

satisfying (2.1). Let H = F or H = φ be the extremal functions depending on
whether condition (2.1) is of infinite or finite type. For x0 ∈ I fixed, suppose that

(4.1) |f ′(x0)| = H ′(x0) , |f ′|′(x0) = H ′′(x0) .

Then

(i) |f(x1)− f(x2)| ≤ |H(x1)−H(x2)| and |f ′(x)| ≤ H ′(x) for all x, x1, x2 ∈ I;

(ii) f admits a spherically continuous extension to I. If f is not injective in the
closed interval, the up to a Möbius transformation, f = H.
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Proof. The normalizations (4.1) are no restriction, in the sense that they can be
achieved by composing f with a suitable Möbius transformation.

To show (i), we consider u = −2 log |f ′|. Then

u′′ + qu = 0 ,

where 2q = Ss. Because of (2.1), we have that q ≤ (1/2)SH. The inequality
|f ′(x)| ≤ H ′(x) follows at once from Sturm comparison, while the second inequality
in (i) follows from integration.

We show the continuous extension, say at x = b. Fix x̄ near b, and let T be a
Möbius transformation so that the curve g = T (f) satisfies

|g′(x̄)| = G′(x̄) , |g′|′(x̄) = G′′(x̄) ,

for G = −1/H. If x̄ is close to b then G is regular near this endpoint. The previous
argument implies that for x ∈ (x̄, b)

|g′(x)| ≤ G′(x) ,

and

|g(x1)− g(x2)| ≤ |G(x1)−G(x2)|
for x̄ ≤ x1, x2 < b. This shows that the modulus of continuity of g is controlled by
that of G near b, and the extension follows.

Suppose now that f is not injective on I. Since it is injective on I, then either
f(a) = f(b) or f(c) ∈ {f(a), f(b)} for some c ∈ I. We claim that the latter cannot
occur. Suppose, on the contrary, that say f(c) = f(b) for some c ∈ I. We may
assume that this common point lies at infinity. Let γ = H(c) and consider the
function

w(y) =
u

v
(H−1(y)) , y ∈ [γ,∞) ,

where u = |f ′|−1/2 and v = (H ′)−1/2. Then

w′′ =
1

2
w4(SH − Ss) ≥ 0 .

If w were constant on [γ,∞) then |f ′| would be a constant multiple of H ′ on
[c, b), which would contradict that f(c) is the point at infinity. Hence w cannot be
constant, and it is therefor bounded below by some line my + n,m 6= 0. If m > 0,
then the inequality w(y) ≥ my + n > 0 for large values of y, which would give

|f ′| ≤ H ′

(mH + n)2

for all x near b. This estimate implies that∫ b

|f ′|dx <∞ ,
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a contradiction to the fact that f(b) = ∞. If m < 0 we analyze the inequality
w(y) ≥ my+n for values close to γ, to reach the contradicting conclusion that f(c)
is a finite point. This shows that if f is not injective on I then f(a) = f(b). Again,
after a Möbius shift, we may assume that this common point lies at infinity. We
follow the previous argument and the function w to conclude that, up to a constant
factor, |f ′| = H ′ on I. But if w is constant, then SH = Ss, which implies that the
curvature k must vanish identically. Therefore, f traces a straight line at equal
speed as H, so f = H up to an isometry. This finishes the proof.

�
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